Extremely Long C-C Bond in (-)-trans-1,2-Di-tert-butyl-1,2-diphenyl- and 1,1-Di-tert-butyl-2,2-diphenyl-3,8-dichlorocyclobuta[b]naphthalenes

Fumio Toda,*,† K oichi Tanaka, ${ }^{\dagger}$ Masaki Watanabe, ${ }^{\dagger}$ Kenichi Tamura, ${ }^{\dagger}$ Ikuko Miyahara, \ddagger Tadashi Nakai, \ddagger and Ken Hirotsu*, \ddagger
Department of Applied Chemistry, Faculty of Engineering, Ehime University, Matsuyama 790-8577, J apan, and Department of Chemistry, Faculty of Science, Osaka City University, Sugimoto-cho, Sumi yoshi-ku, Osaka 950, J apan

Received October 6, 1998

Abstract

The sterically bulky t-Bu-substituted derivatives of 1,1,2,2-tetraphenyl-3,8-dichlorobuta[b]naphthalene (5), trans-1,2-tert-butyl-1,2-di phenyl- (8) and 1,1-di-tert-butyl-2,2-diphenyl-3,8-dichlorocyclobuta[b]naphthalene (12), were prepared. X-ray analysis of 8 and 12 at 150 K showed that $\mathrm{C}-\mathrm{C}$ bonds of $\mathbf{8}$ and $\mathbf{1 2}$ are 1.686 and $1.729 \AA$, respectively. The latter bond length is longer than that of $1.720 \AA$ in 5 and is the longest one reliably determined to date.

Introduction

An extremely long C-C bond length $1.720 \AA^{1}$ has been reported for the $\mathrm{Csp}^{3}-\mathrm{Csp}^{3}$ Iinkage in 1,1,2,2-tetraphen-yl-3,8-dichlorobuta[b]naphthalene (5) prepared according to a new cyclobutaarene synthetic method (Scheme 1). ${ }^{2}$ This was the longest $\mathrm{C}-\mathrm{C}$ single bond, ${ }^{3}$ although a comparable value $1.713 \AA$ i was recently reported for a similar compound (6) by Herges and his co-workers. ${ }^{4}$ These extremely lengthened bonds were proven to be reasonable by theoretical calculations by Herges et al., ${ }^{4}$ Kertesz et al., ${ }^{5}$ Schleyer et al., ${ }^{6}$ and Siegel et al. ${ }^{7}$ for 5 and by Herges et al. for 6. ${ }^{4}$ However, for the origin of the long bond in 5, Herges ${ }^{4}$ and Siegel ${ }^{7}$ estimated a steric repulsion among phenyl groups on the cyclobutene ring, and Schleyer ${ }^{6}$ estimated a through-bond interaction between the two phenyl groups located at the transpositions. In order to clarify the inconsistency, we prepared two di-tert-butyl-substituted derivatives 8 and 12, and their molecular structures were studied by X-ray analysis.

Results and Discussion

Treatment of $\mathbf{1}$ with optically pure (-)-1-tert-butyl-1-phenyl-2-propyn-1-ol (7) ${ }^{8}$ in the presence of $\mathrm{Pd}^{\text {catalyst }}{ }^{9}$ gave the diacetylene diol corresponding to 3, which upon treatment with SOCl_{2} followed by heating gave (-)-trans-1,2-di-tert-butyl-1,2-diphenyl-3,8-dichlorocycl obuta[b]-

[^0]naphthalene (8). However, the optical purity of $\mathbf{8}$ is not determined. When rac-7 was used instead of (+)-7, synthesis of $\mathbf{8}$ failed, although the reason is not clear. Similar treatment of $\mathbf{1}$ with a 1:1 mixture of $\mathbf{2}$ and 1,1-di(tert-butyl)-2-propyn-1-ol 9 gave a mixture of 3 (51\%), 10 (5\%), and the unsymmetrically substituted 11 (24\% yield), and these were separated by column chromatography on silica gel using toluene as an eluent. Treatment of 11 with SOCl_{2} followed by heating gave 1,1-di-tert-butyl-2,2-diphenyl-3,8-dichlorocyclobuta[b]naphthal ene 12. It has been reported that the treatment of $\mathbf{1 0}$ with SOCl_{2} gives thermally stable diallene corresponding to 4. ${ }^{2}$ This suggests that the tetra-tert-butyl substituted cyclobuta[b]naphthalene is too unstable to exist due to a serious steric repulsion between the tert-butyl groups.

The crystal structures of 8 and $\mathbf{1 2}$ were determined by the X-ray diffraction method at 150 K , with no detectable crystal damage observed during data collection, and molecular structures of $\mathbf{8}$ and $\mathbf{1 2}$ are shown in Figures 1 and 2. The accuracy of the molecular dimension of $\mathbf{1 2}$ is pretty good, with an esd of $\sim 0.002 \AA$ for bond lengths, while the crystal 8 contained 1 equiv of disordered n-hexane at 293 K , resulting in relatively low accuracy of observed geometrical parameters of 8, although n-hexane is ordered at 150 K .
The molecule 8 has a 2 -fold symmetry axis that goes through the midpoints of the C2-C3 and C8-C9 bonds. Both sides of the cycl obutene ring are very crowded with the ring almost completely covered by 1,2-diphenyl-1,2-di-tert-butyl groups from above and below. The naphthalene ring of 8 is planar within $0.056(4) \AA$, and $C 2$ and C3 deviate by 0.22 and $-0.24 \AA$ from this plane, respectively, indicating that the cycl obutene ring is not planar but twisted. The bond lengths of the cycl obutene ring in 8 are $C 2-C 3=1.686(5) \AA, C 1-C 2=1.542(5) \AA, C 3-C 4$ $=1.536(5) \AA$, and $C 1-C 4=1.419(5) \AA$.
The naphthalene ring of $\mathbf{1 2}$ is planar within 0.046(1) \AA, and C2 and C3 deviate from this plane by 0.24 and $-0.13 \AA$, respectively, showing that the similar twist of the cyclobutene ring is observed compared with that of 8. The cyclobutene ring is completely shielded from the surroundings by 1,1-diphenyl-2,2-di-tert-butyl groups.

The bond lengths of the cyclobutene ring in $\mathbf{1 2}$ are C2-

Scheme 1

(-)-

7
(-)-

8

Figure 1. Compound 8 with atomic labeling. Selected distances (\AA) and angles (deg) determined at 150 K (standard deviations $0.005 \AA$ and 0.3°) and $293 \mathrm{~K}\left(0.008 \AA\right.$ and $\left.0.6^{\circ}\right)$ are as follows: $\mathrm{C} 2-\mathrm{C} 3=1.686$ (1.696 at 293 K), $\mathrm{C} 1-\mathrm{C} 2=1.542$ (1.540), C3-C4 = 1.536 (1.538), $\mathrm{C} 1-\mathrm{C} 4=1.419$ (1.416), C4C5 $=1.365$ (1.367), $\mathrm{C} 1-\mathrm{C} 12=1.351$ (1.340); C1-C2-C3 = 85.1 (84.5), С2-C3-С4 = 83.7(84.0), С2-C1-С $4=93.1(94.1)$, C1-C4-C3 = 95.3(94.9). Selected nonbonded contacts (\AA) are as follows: $\mathrm{C} 13-\mathrm{C} 30=3.489, \mathrm{C} 13-\mathrm{C} 32=3.134, \mathrm{C} 14-\mathrm{C} 32$ $=3.154, \mathrm{C} 20-\mathrm{C} 23=3.287, \mathrm{C} 20-\mathrm{C} 24=3.228, \mathrm{C} 22-\mathrm{C} 28=$ 3.430 .
$\mathrm{C} 3=1.729(2) \AA, \mathrm{C} 1-\mathrm{C} 2=1.529(1) \AA, \mathrm{C} 3-\mathrm{C} 4=$ $1.539(2) \AA$, and $\mathrm{C} 1-\mathrm{C} 4=1.409(2) \AA$.

Both structures of $\mathbf{8}$ and $\mathbf{1 2}$ have been solved also at 293 K. The bond distances and angles determined at 150 and 293 K are consistent within experimental errors. The

Figure 2. Compound 12 with atomic labeling. Selected distances (\AA) and angles (deg) determined at 150 K (standard deviations $0.002 \AA$ and 0.1°) and $293 \mathrm{~K}\left(0.002 \AA\right.$ and $\left.0.1^{\circ}\right)$ are as follows: $\mathrm{C} 2-\mathrm{C} 3=1.729$ (1.734 at 293 K), $\mathrm{C} 1-\mathrm{C} 2=1.529$ (1.530), C3-C4 = 1.539 (1.535), C1-C4 $=1.409$ (1.409), C4$\mathrm{C} 5=1.365$ (1.370), $\mathrm{C} 1-\mathrm{C} 12=1.367$ (1.365); $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3=$ 83.8 (83.6), C2-C3-C4 = 83.2(83.3), C2-C1-C4 = 95.4(95.5), C1-C4-C3 = 95.3(95.5). Selected nonbonded contacts (\AA) are as follows: $\mathrm{C} 13-\mathrm{C} 26=3.354, \mathrm{C} 13-\mathrm{C} 28=3.156, \mathrm{C} 14-\mathrm{C} 28$ $=3.261, \mathrm{C} 18-\mathrm{C} 26=3.388, \mathrm{C} 19-\mathrm{C} 30=2.964, \mathrm{C} 20-\mathrm{C} 30=$ 3.314, C24-C31 $=3.296$.
$\mathrm{Csp}^{3}-\mathrm{Csp}^{3}$ single bonds of the cyclobutene ring in 8 and 12 are unusually long when compared with the typical $\mathrm{Csp}^{3}-\mathrm{Csp}^{3}$ bond, $1.51-1.59 \AA \AA^{4}$ The $\mathrm{Csp}^{3}-\mathrm{Csp}^{3}$ bond in 12 is even longer than the corresponding distance of

Figure 3. $X-X$ deformation electron densities of 12 in the plane of the C1, C4, C5, C6, C11, and C12 rings. Contour interval $0.04 \mathrm{e}^{2} \AA^{3}$, negative electron densities dashed.
1.720(4) \AA in 5^{1} and is the longest one reliably determined to date.

The $X-X$ deformation electron density of $\mathbf{1 2}$ clearly shows bonding electrons of the cyclobutarene ring (Figure 3). ${ }^{10}$ The bonding electron densities of cyclobutene are placed outside the ring to reduce the ring strain, which is essentially the same as that found in cyclobutarene compounds. ${ }^{11}$ The unusual el ongation of the $\mathrm{Csp}^{3}-\mathrm{Csp}^{3}$ bond in the cyclobutene ring may be mainly attributed to the steric repulsion among bulky substituents at C2 and C3. The larger steric congestion of $\mathbf{1 2}$ than that of 8 is consistent with the longer $\mathrm{Csp}^{3}-\mathrm{Csp}^{3}$ distance of $\mathbf{1 2}$ than that of 8. On the contrary, through-bond interaction between two phenyls is not expected in 12, although the interaction is expected in 8.

Experimental Section

Preparation of 8. A mixture of $\mathbf{1}(2 \mathrm{~g}, 8.5 \mathrm{mmol}), \mathbf{7}^{8}(8 \mathrm{~g}$, $16.3 \mathrm{mmol})$, $\mathrm{Cul}(0.1 \mathrm{~g}),\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{PdCl}_{2}\right](0.3 \mathrm{~g}), \mathrm{PPh}_{3}(0.4 \mathrm{~g})$, and $\mathrm{NEt}_{3}(100 \mathrm{~mL})$ was heated under reflux for 12 h . After filtration, the organic layer was evaporated and the residue chromatographed on silicagel to give (+)-1,2-bis(3-hydroxy-3-tert-butyl-3-phenyl-1-propynyl) benzene as colorless prisms (1.4 $\mathrm{g}, 37 \%$ yield, $\mathrm{mp} 95-97^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}+42^{\circ}$ (c 0.2, THF)). IR (Nujol): 3536, $3503 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR: $\delta 0.95$ (Me, 18H), 2.24 $(\mathrm{OH}, 2 \mathrm{H}), 7.27-7.57$ (Ar, 14H). Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{34} \mathrm{O}_{2}$: C, 85.29; H, 7.60. Found: C, 85.02; H, 7.90. A solution of (+)-1,2-bis(3-hydroxy-3-tert-butyl-3-phenyl-1-propynyl)benzene (1.2 g), pyridine (3.5 mL), and $\mathrm{SOCl}_{2}(3 \mathrm{~mL})$ in THF (50 mL) was stirred at room temperature for 4 h . The reaction mixture was worked up by the usual method to give 8 as colorless prisms ($0.31 \mathrm{~g}, 10 \%$ yield) $\mathrm{Mp}: 173-176{ }^{\circ} \mathrm{C}$. $[\alpha]_{\mathrm{D}}:-12^{\circ}$ (c 0.05 , $\left.\mathrm{CHCl}_{3}\right)$). ${ }^{1} \mathrm{H}$ NMR: $\delta 0.69(\mathrm{Me}, 18 \mathrm{H}), 7.29-8.52$ (Ar, 14H). UV $\left(\mathrm{CHCl}_{3}\right): \lambda_{\text {max }}(\epsilon)=247$ (11 100), 263 (2900), 274 (3600), 285 (5000), 296 (5900), 307 nm (4300). Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{Cl}_{2}$: C, 78.84; H, 6.62. Found: C, 78.59; H, 6.53.

Preparation of 12. A mixture of $\mathbf{1}(2.1 \mathrm{~g}, 8.9 \mathrm{mmol}), 2(3.41$ $\mathrm{g}, 16.4 \mathrm{mmol}), 9(2.76 \mathrm{~g}, 16.4 \mathrm{mmol})$, $\mathrm{Cul}(0.04 \mathrm{~g}),\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2^{-}}\right.$

[^1]PdCl_{2}] (0.31 g), $\mathrm{PPh}_{3}(0.24 \mathrm{~g})$, and $\mathrm{NEt}_{3}(100 \mathrm{~mL})$ was heated under reflux for 24 h . After filtration, the organic layer was evaporated and the residue chromatographed on silica gel using tol uene as an eluent to give $\mathbf{3}$ ($2.23 \mathrm{~g}, 51 \%$ yield), 10 ($0.18 \mathrm{~g}, 5 \%$ yield), and 11 ($0.97 \mathrm{~g}, 24 \%$ yield). 3. Colorless prisms. Mp: 162-164 ${ }^{\circ} \mathrm{C}$. IR (Nujol): 3280, $2227 \mathrm{~cm}^{-1}$. ${ }^{\mathrm{H}} \mathrm{H}$ NMR: $\delta 2.9(\mathrm{OH}, 2 \mathrm{H}), 7.3-7.5(\mathrm{Ar}, 24 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{26} \mathrm{O}_{2}$: C, 88.14; H, 5.34. Found: C, 88.30; H, 5.20. 10. Colorless prisms. Mp: $160-163^{\circ} \mathrm{C}$. IR (Nujol): 3588, 2229 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR: $\delta 1.24(\mathrm{Me}, 36 \mathrm{H}), 2.35(\mathrm{OH}, 2 \mathrm{H}), 7.22-7.26$ (Ar, 2H), 7.40-7.43 (Ar, 2H). Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{O}_{2}: \mathrm{C}$, 81.90; H, 10.31. Found: C, 81.81; H, 10.36. 11. Colorless prisms. Mp: 97-99 ${ }^{\circ} \mathrm{C}$. IR (Nujol): 3494, $2216 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR: $\delta 1.15(\mathrm{Me}, 18 \mathrm{H}), 2.35(\mathrm{OH}, 2 \mathrm{H}), 7.16-7.70(\mathrm{Ar}, 14 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{34} \mathrm{O}_{2}$: C, 85.29; H, 7.60. F ound: C, 85.22; $\mathrm{H}, 7.23$. A solution of $\mathbf{1 1}(0.92 \mathrm{~g})$, pyridine (1.32 mL), and SOCl_{2} $(1.16 \mathrm{~mL})$ in THF (50 mL) was stirred at $0^{\circ} \mathrm{C}$ for 4 h . The reaction mixture was worked up by the usual method to give 12 as col orless prisms ($0.22 \mathrm{~g}, 22 \%$ yield, $\mathrm{mp} 197-199^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR: $\delta 1.14$ (Me, 18H), 7.19-7.26 (Ph, 10H), 7.72 (Ar, 2H), 8.49 (Ar, 2H). UV $\left(\mathrm{CHCl}_{3}\right): \lambda_{\text {max }}(\epsilon)=243(26000), 275(4100)$, 286 (4800), 297 (5400), 309 nm (4200). Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{32}{ }^{-}$ Cl_{2} : C, 78.84; H, 6.62. Found: C, 78.94; H, 6.60.

Crystallographic Studies. The X-ray data were collected on a Rigaku AFC7R four-circle diffractometer using $\omega / 2 \theta$ scan mode. All calculations were performed with the crystallographic software package teXsan (M olecular Structure Corp., 1985, 1992).

Crystal data for 8 (from n-hexane): $\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{Cl}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{14}$, orthorhombic, space group $\mathrm{P} 2_{1} 2_{1} 2_{1}$, $\mathrm{Cu} \mathrm{K} \alpha$ radiation, $2 \theta_{\text {max }}=$ 120°. The structure was solved by direct methods (SIR92) ${ }^{12}$ and subsequent Fourier recycling (DIRDIF 94) ${ }^{13}$ and refined by full-matrix least-squares refinement against |F|, with all hydrogen atoms fixed at the calculated positions. Empirical absorption corrections were applied. (a) T $=293 \mathrm{~K}, \mathrm{a}=18.114$ (1) $\AA, \quad b=20.916(2) \AA,, c=8.585(1) \AA, U=3252.5(4) \AA^{3} . D_{c}=$ $1.171 \mathrm{~g} \mathrm{~cm}^{-3}, \mu=19.59 \mathrm{~cm}^{-1}, 2794$ independent intensities, 2515 observed $(I>2.00 \sigma(I))$. Weighting scheme $=1 /\left[\sigma^{2}\left(F_{0}\right)^{2}+\right.$ $\left.(0.025)^{2} \mathrm{~F}_{\mathrm{o}}{ }^{2}\right]^{-1}, \mathrm{R}=0.072, \mathrm{R}_{\mathrm{w}}=0.111, \mathrm{GOF}=3.46$, maximum residual el ectron density 0.44 e \AA^{-3}. (b) $\mathrm{T}=150 \mathrm{~K}, \mathrm{a}=18.059$ (8) $\AA, b=20.540(9) ~ \AA, c=8.479(5) ~ A, U=3145(2) \AA^{3}, D_{c}=$ $1.211 \mathrm{~g} \mathrm{~cm}^{-3}, \mu=20.26 \mathrm{~cm}^{-1}, 2711$ independent intensities, 2646 observed ($\mathrm{I}>2.00 \sigma(\mathrm{I})$, weighting scheme $=1 /\left[\sigma^{2}\left(\mathrm{~F}_{\mathrm{o}}\right)^{2}+\right.$ $(0.035)^{2} \mathrm{~F}^{2} \mathrm{~J}^{-1}, \mathrm{R}=0.055, \mathrm{R}_{\mathrm{w}}=0.084, \mathrm{GOF}=2.37$, maximum residual el ectron density 0.37 e \AA^{-3}.

Crystal data for 12 (from toluene): $\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{Cl}_{2}$, triclinic, space group P-1, Mo K α radiation. The structure was solved by direct methods (SHELX86) ${ }^{14}$ and subsequent Fourier recycling (DIRDIF 94) and refined by full-matrix least-squares refinement against $|\mathrm{F}|$ with isotropic hydrogens. Empirical absorption corrections were applied. (a) $\mathrm{T}=293 \mathrm{~K}$: $\mathrm{a}=$ 9.935(1) $\AA, \mathrm{b}=15.092(4) \AA, \mathrm{c}=9.293(1) \AA, \alpha=105.10(1)^{\circ}, \beta$ $=109.15(1)^{\circ} \gamma=89.40(1)^{\circ}, \mathrm{U}=1266.6(4) \AA^{3}, \mathrm{D}_{\mathrm{c}}=1.278 \mathrm{~g}$ $\mathrm{cm}^{-3}, \mu=2.75 \mathrm{~cm}^{-1}, 2 \theta_{\text {max }}=50^{\circ}, 4443$ independent intensities, 3955 observed ($\mathrm{I}>2.00 \sigma(\mathrm{I})$), weighting scheme $=1 /\left[\sigma^{2}\left(\mathrm{~F}_{\mathrm{o}}\right)^{2}+\right.$ $\left.(0.035)^{2} \mathrm{~F}_{0}^{2}\right]^{-1}, \mathrm{R}=0.037, \mathrm{R}_{\mathrm{w}}=0.058, \mathrm{GOF}=1.65$, maximum residual electron density 0.39 e \AA^{-3}. (b) $\mathrm{T}=150 \mathrm{~K}: ~ a=$ $9.861(5) \AA, \mathrm{b}=14.983(8) \AA, \mathrm{c}=9.253(5) \AA, \alpha=105.37(7)^{\circ}, \beta$ $=109.22(4)^{\circ}, \gamma=89.50(6)^{\circ}, U=1239(1) \AA^{3}, D_{c}=1.306 \mathrm{~g} \mathrm{~cm}^{-3}$, $\mu=2.81 \mathrm{~cm}^{-1}, 2 \theta_{\max }=60^{\circ}, 6530$ independent intensities, 5837 observed ($1>2.00 \sigma(\mathrm{I})$), weighting scheme $=1 /\left[\sigma^{2}\left(\mathrm{~F}_{0}\right)^{2}+\right.$ $\left.(0.035)^{2} \mathrm{~F}_{0}{ }^{2}\right]^{-1}, \mathrm{R}=0.037, \mathrm{R}_{\mathrm{w}}=0.066, \mathrm{GOF}=1.68$, maximum residual electron density 0.48 e \AA^{-3}.

[^2]Acknowledgment. This work was partly supported by the Grant-in-Aid for scientific research from the Ministry of Education, Science, Sports and Culture, J apan.

Supporting Information Available: X-ray crystallographic details for $\mathbf{8}$ and 12. Crystallographic data (excluding structure factors) for the structures in this paper have been deposited with the Cambridge Crystallographic Data Centre
as supplementary publication nos. CCDC 114661-114664. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, U.K. (fax: +44 1223336033 or e-mail: deposit@ccdc.cam.ac.uk). (50 pages). This material is available free of charge via the Internet at http://pubs.acs.org.

J O982010C

[^0]: † Ehime University.
 \# Osaka City University
 (1) Toda, F.; Tanaka, K.; Stein, Z.; Goldberg, I. Acta Crystallogr., Sect. C 1996, 52, 177
 (2) Toda, F.; Tanaka, K.; Sano, I.; Isozaki, T. Angew. Chem., Int. Ed. Engl. 1994, 33, 1757.
 (3) Kaupp, G.; Boy, J. Angew. Chem., Int. Ed. Engl. 1997, 36, 48
 (4) Kammermeier, S.; J ones, P. G.; Herges, R. Angew. Chem., Int Ed. Engl. 1997, 36, 1757.
 (5) Choi, C.-H.; Kertesz, M. J . Chem. Soc., Chem. Commun. 1997 2199.
 (6) Bettinger, H. F.; Schleyer, P. v. R.; Schaefer, H. F., III. J . Chem. Soc., Chem. Commun. 1998, 769.
 (7) Baldrige, K. K.; K asahara Y.; Ogawa, K.; Siegel, J . S.; Tanaka, K.; Toda, F. J. Am. Chem. Soc. 1998, 120, 6167.
 (8) Toda, F.; Tanaka, K.; Ueda, H. Tetrahedron Lett. 1981, 22, 4669
 (9) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975 4467.

[^1]: (10) Dunitz, J. D. X-Ray Analysis and The Structure of Organic Molecules; Verlag: New York, 1995; pp 391-417.
 (11) Boese, R.; Blaeser, D. Angew. Chem., Int. Ed. Engl. 1988, 27, 304.

[^2]: (12) Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, M.; Giacovazzo, C.; Guagliardi, A.; Polidori, G. J. Appl. Crystallogr. 1994, 27, 435.
 (13) Beurskens, P. T.; Admiraal, G.; Beurskens, G.; Bosman, W. P.; de Gelder, R.; Israel, R.; Smits, J. M. M. The DIRDIF-94 program system; Technical Report of the Crystallography Laboratory; University of Nijmegen: The Netherlands, 1944.
 (14) Sheldrick, G. M. Crystallographic Computing 3; Sheldrick, G. M., Kruger, C., Goddard, R., Eds.; Oxford University Press: Oxford, 1985; pp 175-189.

